[uv-software] can_open

Software fiir industrielle Kommunikation

Antriebstechnik und Automatisierung February 2009

Abstract

CANopen Commandline Tool

can_open - Request CANopen services from a CANopen device on the command line.

Description

Usage

The CANopen Commanline Tool is a text-based program to request CANopen services
from a CANopen device on the command line by entering commands at the program’s
prompt or processing them from a batch file.

The syntax for these commands is taken from the CANopen specification GiA DS-309/3
(Interfacing CANopen with TCP/IP — ASCIl Mapping). The program is build on the UVS
CANopen Master library, which exists for several microcontrollers and even for some CAN
interface boards from different vendors and for different operating systems. Here the
CANopen Commandline Tool uses the SocketCAN interface on Linux operating system; it
runs well with a PEAK PCAN-USB-Dongle. Furthermore the program offers a gateway
function for tunneling CANopen over TCP/IP.

The program allows reading and writing of individual parameter values of any connected
CANopen device. Due to the fact, that the UVS CANopen Master library is not a complete
CANopen stack, some limitations must be taken into account. But the missing CANopen
services can be build up manually from the CAN layer 2 commands of the program.

The CANopen Commandline Tool can operate in three different modes. In the local mode
the program directly accesses a CANopen network. Commands are entered at the
program’s prompt or are processed from a batch file. In gateway mode the program also
accesses a CANopen network, but additional opens a TCP/IP port be accessed by any
CANopen-over-TCP/IP client. Finally the program can operate in remote mode. This
means commands are entered at the program’s prompt or are processed from a batch
file and will be transmitted over ethernet to a CANopent-over-TCP/IP gateway which has
access to a CANopen network.

For each mode of operation the program will be started with different arguments and
options. As with every console program redirection of the standard input (for batch
processing) and of the standard output (for logging) is possible:

Copyright © 2009 UV Software, Friedrichshafen. syntax.odt

can_open [uv-software]
Version 0.2 Antricbetechnik und Automatisiering
Usage: can_open <interface> [<option>...]
Options:
—-g, ——gateway=<port> operate in gateway mode on port <port>
-i, —--id=<node-id> node-id of CANopen Master (default=-1)
—-net=<network> set default network number (default=1)
——node=<node-id> set default node-id (default=1)
——echo echo input stream to output stream
——prompt prefix input stream with a prompt
—-—-syntax show input syntax and exit
-h, —-help display this help and exit
——version show version information and exit
Examples:
1. Local mode: can_open <socket-can> —--prompt
2.1 Gateway mode: can_open <socket-can> --gateway <port> —--echo
2.2 Remote mode: can_open <ip-addr>:<port> ——prompt
In local mode and in remote mode press D to leave the interactive input.
In gateway mode press “C to close the port and exiting the program.
Syntax

The syntax for the CANopen commands is taken from the CANopen specification CiA DS-
309/3 (Interfacing CANopen with TCP/IP — ASCIl Mapping). In general a command
consists of a 32-bit sequence number enclosed in square brackets, followed by an
optional 8-bit network number, an optional 7-bit node number and the command
mnemonic and optional arguments:

Input syntax (client)

<command-request> = "['<sequence>'"l' [[<net>] <node>] <command>
<command> == <command-specifier> {<parameter>}*
<sequence> = UNSIGNED32

<net> .= UNSIGNEDS8

<node> = UNSIGNED8

All commands are confirmed. A confirmation consists of the repetition of the sequence
number of the command enclosed in square brackets, followed by the command
response or followed by an error code prefixed with the string “Error: ™

Output syntax (server)

<command-response> = "['<sequence>'"l' <value> |
'['<sequence>" "OK" |
'T'<sequence>'"T "Error:" <sdo-abort-code> |
'['<sequence>'"] "Error:" <error-code>

Seite 2

Copyright © 2009 UV Software, Friedrichshafen.

[uv-software] can_open

Software fiir industrielle Kommunikation

Antriebstechnik und Automatisierung February 2009

SDO access commands

The SDO access commands are used for accessing a single object entry of a connected
CANopen device. This means to read (Upload SDO command) or to write (Download
SDO command) an object value by means of a SDO transfer. Depending on the data type
of the object entry, the segmented or the expedited SDO protocol will be used. For a list
of supported data types and their encoding see below.

Upload SDO command
With the Upload SDO command an object value will be read from the specified node at
the given object index and sub-index. The data type argument must match the data type
of the addressed object entry.

Input syntax (client)

<upload-sdo-request> = T'<sequence>"1" [[<net>] <node>] ("read"|'r') <index>
<sub-index> <datatype>

Output syntax (server)
<upload-sdo-response> = "['<sequence>'"l' <value> |
'['<sequence>"]" "Error:" <sdo-abort-code> |
'['<sequence>'"T" "Error:" <error-code>
Upon successful execution of the command, the object value will be written to the
standard output. If an error has been encountered, then an error code prefixed with the
string “Error: ” will be written to the standard output. This error code is either a SDO
abort code defined in the CANopen specification, or an internal error number. For a list of
error codes see below.
Download SDO command
With the Download SDO command an object value will be written to the specified node at
the given object index and sub-index. The data type argument must match the data type
of the addressed object entry. The encoding of values is described below.

Input syntax (client)

<download-sdo-request> = "['<sequence>'"l [[<net>] <node>] ("write"|'w') <index>
<sub-index> <datatype> <value>

Output syntax (server)

<download-sdo-response> = "T'<sequence>"T "OK" |

Copyright © 2009 UV Software, Friedrichshafen. Seite 3

can_opeéen
Version 0.2

[uv-software]

Software fiir industrielle Kommunikation
Antriebstechnik und Automatisierung

'['<sequence>"]" "Error:" <sdo-abort-code> |
'['<sequence>'"T" "Error:" <error-code>

Upon successful execution of the command, the string “Ok” will be written to the standard
output. If an error has been encountered, then an error code prefixed with the string
“Error: ” will be written to the standard output. This error code is either a SDO abort
code defined in the CANopen specification, or an internal error number. For a list of error
codes see below.

Configure SDO timeout command

With the Configure SDO timeout command the time-out value (in milliseconds) for both
the SDO upload service and the SDO download service will be set.

Input syntax (client)

<set-sdo-timeout-request> = "['<sequence>"T [[<net>] <node>] "set" "sdo_timeout"
<milliseconds>

Output syntax (server)

<set-sdo-timeout-response> ::="['<sequence>"] "OK" |
'['<sequence>"]" "Error:" <error-code>

Upon successful execution of the command, the string “Ok” will be written to the standard
output. If an error has been encountered, then an error code prefixed with the string
“Error: " will be written to the standard output. For a list of error codes see below.

PDO access commands

The PDO access commands are used for PDO configuration and communication for both
receive-PDOs and transmit-PDOs.

Note: The current version of the UVS CANopen Master library does not support PDO
configuration and communication. Use the vendor-specific CAN layer 2 commands for this
purpose; see below.

Configure RPDO command

With the Configure RPDO command a receive-PDO will be created.
Input syntax (client)

<set-rpdo-request> = "['<sequence>'"l' [[<net>] <node>] "set" "rpdo” ...

Seite 4

Copyright © 2009 UV Software, Friedrichshafen.

[uv-software] can_open

Software fiir industrielle Kommunikation

Antriebstechnik und Automatisierung February 2009

Output syntax (server)
<set-rpdo-response> = ['<sequence>"1" "Error: 100"
This command is currently not supported: error 100; see below.
Configure TPDO command
With the Configure TPDO command a transmit-PDO will be created.
Input syntax (client)
<set-tpdo-request> = ['<sequence>"]" [[<net>] <node>] "set" "tpdo" ...
Output syntax (server)
<set-tpdo-response> = ['<sequence>"1" "Error: 100"
This command is currently not supported: error 100; see below.
Read PDO data command
With the Read PDO data command the data received by a RPDO will be read. If the
RPDO is configured with transmission type 252 or 253, then it will be trigger by means of
a RTR.

Input syntax (client)

<read-pdo-request> = "['<sequence>"T [<net>] ("read"

|rl) (llpdollllpl) .
Output syntax (server)
<read-pdo-response> = "['<sequence>"T "Error: 100"

This command is currently not supported: error 100; see below.

CANopen NMT commands

With the CANopen NMT commands a single CANopen node or a whole CANopen
network will be controlled and managed. Associated NMT error control services like
heartbeat or node guarding can be started and stopped.

Note: The current version of the UVS CANopen Master library does not implement an
active NMT master with heartbeat or node guarding capabilities. So the NMT error control
is not supported right now.

Copyright © 2009 UV Software, Friedrichshafen. Seite 5

can_opeéen
Version 0.2

[uv-software]

Software fiir industrielle Kommunikation
Antriebstechnik und Automatisierung

Start node command

Stop

With the Start node command a single node or a whole network will be set to NMT state
OrperaTionaL; the corresponding NMT start_remote_node command is trigger as a
broadcast message.

Input syntax (client)

<start-node-request> = "T'<sequence>'"T [[<net>] <node>] "start"

Output syntax (server)

<start-node-response> = "['<sequence>"] "OK" |
'['<sequence>'"] "Error:" <error-code>

Upon successful execution of the command, the string “Ok” will be written to the standard
output. If an error has been encountered, then an error code prefixed with the string
“Error: ” will be written to the standard output. For a list of error codes see below.

node command

With the Stop node command a single node or a whole network will be set to NMT state
Stoppep; the corresponding NMT Stop_remote_node command is trigger as a broadcast
message.

Input syntax (client)

<stop-node-request> = "['<sequence>'"T [[<net>] <node>] "stop”

Output syntax (server)

<stop-node-response> :="['<sequence>"T "OK" |
'['<sequence>"]" "Error:" <error-code>

Upon successful execution of the command, the string “Ok” will be written to the standard
output. If an error has been encountered, then an error code prefixed with the string
“Error: " will be written to the standard output. For a list of error codes see below.

Set node to pre-operational command

With the Set node to pre-operational command a single node or a whole network will be
set to NMT state Pre-oreraTiONAL; the corresponding NMT Enter_pre-
operational_state command is trigger as a broadcast message.

Input syntax (client)

Seite 6

Copyright © 2009 UV Software, Friedrichshafen.

[uv-software] can_open

Software fiir industrielle Kommunikation

Antriebstechnik und Automatisierung February 2009

<set-pre-operational-requests ::='"['<sequence>"]' [[<net>] <node>]
("preoperational”|"preop")

Output syntax (server)

<set-pre-operational-response> ::= '['<sequence>"' "OK" |
'['<sequence>"]" "Error:" <error-code>

Upon successful execution of the command, the string “ok” will be written to the standard

output. If an error has been encountered, then an error code prefixed with the string

“Error: " will be written to the standard output. For a list of error codes see below.
Reset node command

With the Reset node command a single node or a whole network will be set to NMT state

ReseT-appLIcATION; the corresponding NMT Reset_node command is trigger as a

broadcast message.

Input syntax (client)

<reset-node-request> = ['<sequence>"]" [[<net>] <node>] "reset” "node"

Output syntax (server)

<reset-node-response> i="T'<sequence>"T "OK" |
'['<sequence>"]" "Error:" <error-code>

Upon successful execution of the command, the string “Ok” will be written to the standard

output. If an error has been encountered, then an error code prefixed with the string

“Error: " will be written to the standard output. For a list of error codes see below.
Reset communication command

With the Reset communication command a single node or a whole network will be set to

NMT state Reset-communication; the corresponding NMT Reset__communication

command is trigger as a broadcast message.

Input syntax (client)

<reset-communication-requests> ::= '['<sequence>']" [[<net>] <node>] "reset"
("communication"|"comm")

Output syntax (server)

<reset-communication-response> ::= '['<sequence>" "OK" |

Copyright © 2009 UV Software, Friedrichshafen. Seite 7

can_open [uv-software]

H Software fir industrielle Kommunikation
Version 0.2 Antriebstechnik und Automatisierung

'['<sequence>"]" "Error:" <error-code>

Upon successful execution of the command, the string “oK” will be written to the standard

output. If an error has been encountered, then an error code prefixed with the string

“Error: " will be written to the standard output. For a list of error codes see below.
Enable node guarding command

With the Enable node guarding command the NMT node guarding service with the

parameters guard time and life time factor will be started for a specific node (NMT slave)

on the NMT master.

Input syntax (client)

<enable-guarding-request> = ['<sequence>"]" [[<net>] <node>] "enable" "guarding”
<guarding-time> <lifetime-factor>

Output syntax (server)

<enable-guarding-response> ::='['<sequence>'l' "Error: 100"

This command is currently not supported: error 100; see below.
Disable node guarding command

With the Disable node guarding command the NMT node guarding service will be
stopped for a specific node.

Input syntax (client)

<disable-guarding-request> = "['<sequence>'"T' [[<net>] <node>] "disable"
"guarding"

Output syntax (server)
<disable-guarding-response> ::='['<sequence>']' "Error: 100"
This command is currently not supported: error 100; see below.
Start heartbeat consumer command
With the Start heartbeat consumer command the consumption of heartbeat messages
transmitted by a specific node (heartbeat producer) will be started on the NMT master

(heartbeat consumer).

Input syntax (client)

Seite 8 Copyright © 2009 UV Software, Friedrichshafen.

[uv-software] can_open

Antriebstechnik und Automatisierung February 2009

<enable-heartbeat-request> = "T'<sequence>'"l' [[<net>] <node>] "enable"
"heartbeat" <heartbeat-time>

Output syntax (server)

<enable-heartbeat-response> ::='['<sequence>']' "Error: 100"

This command is currently not supported: error 100; see below.
Stop heartbeat consumer command

With the Stop heartbeat consumer command the consumption of heartbeat messages
transmitted by a specific node (heartbeat producer) will be stopped on the NMT master
(heartbeat consumer).

Input syntax (client)

<disable-heartbeat-request> ::="['<sequence>"]" [[<net>] <node>] "disable"
"heartbeat”

Output syntax (server)

<disable-heartbeat-response> ::='['<sequence>" "Error: 100"

This command is currently not supported: error 100; see below.
Device failure management commands

The Device failure management commands are used to manage device failures like
emergency messages (EMCY message).

Note: The current version of the UVS CANopen Master library does not implement an
active EMCY consumer. Use the vendor-specific CAN layer 2 commands for this purpose;
see below.

Read device error command

With the Read device error command the emergency message information received from
a specific node will be read.

Input syntax (client)
<read-error-request> ="T'<sequence>'"l' [[<net>] <node>] ("read"|'r') "error"

Output syntax (server)

Copyright © 2009 UV Software, Friedrichshafen. Seite 9

can_opeéen
Version 0.2

[uv-software]

Software fiir industrielle Kommunikation
Antriebstechnik und Automatisierung

<read-error-response> = ['<sequence>"1" "Error: 100"

This command is currently not supported: error 100; see below.

CANopen interface configuration commands

The CANopen interface configuration commands are used to configure the CANopen
interface and the CAN controller respectively.

Initialize gateway command

With the Initialize gateway command the CAN interface will be initialized, which means a
reset of the CAN controller will be performed and eventually new bit-timing parameters
will be set. This command is useful after bus-off conditions.

Note: On a SocketCAN interface the CAN controller can not be (re-)initialized from within
a user application. So this command is just a dummy function; nor the CAN controller will
be reset nor the bit-timing will be changed!

<initialize-request> = ['<sequence>"1' [<net>] "init" <baudrate-index>

Output syntax (server)

<initialize-response> = T'<sequence>"l" "OK" |
'['<sequence>'"T" "Error:" <error-code>

Upon successful execution of the command, the string “Ok” will be written to the standard
output. If an error has been encountered, then an error code prefixed with the string
“Error: " will be written to the standard output. For a list of error codes see below.

Store configuration command

The Store configuration command is used to store some program settings in some kind of
non-volatile memory or INI-file.

Input syntax (client)

<store-configuration-requests ::='['<sequence>"]' [<net>] "store"
[IICFGII | IIPDOH | lISDOll | IINMTII]

Output syntax (server)
<store-configuration-response> ::='['<sequence>']' "Error: 100"

This command is currently not supported: error 100; see below.

Seite 10

Copyright © 2009 UV Software, Friedrichshafen.

[uv-software] can_open

Software fiir industrielle Kommunikation

Antriebstechnik und Automatisierung February 2009

Restore configuration command

The Restore configuration command is used to restore some program settings from some
kind of non-volatile memory or INI-file.

Input syntax (client)

<restore-configuration-requests ::='['<sequence>']" [<net>] "restore”
[IICFGII | IIPDOII | IISDOII | IINMTII]

Output syntax (server)

<restore-configuration-response> ::= '['<sequence>'l' "Error: 100"

This command is currently not supported: error 100; see below.
Set heartbeat producer command

The Set heartbeat producer command is used to configure and start the transmission of
the heartbeat message on the NMT master.

Note: The current version of the UVS CANopen Master library does not implement an
active NMT master with heartbeat capability. Use the vendor-specific CAN layer 2
commands for this purpose; see below.

Input syntax (client)

<set-heartbeat-request> = ['<sequence>"1" [<net>] "set" "heartbeat"
<heartbeat-time>

Output syntax (server)

<set-heartbeat-response> = ['<sequence>"]" "Error: 100"

This command is currently not supported: error 100; see below.
Set node-id command

With Set node-id command the node-id of the local node on the CANopen interface will
be set.

Note: The current version of the UVS CANopen Master library does not implement a local
node with its own object dictionary on the CANopen interface. Use a regular CANopen
stack instead;-)

Copyright © 2009 UV Software, Friedrichshafen. Seite 11

can_opeéen
Version 0.2

[uv-software]

Software fiir industrielle Kommunikation
Antriebstechnik und Automatisierung

Input syntax (client)

<set-id-request> = ['<sequence>"' [<net>] "set" "id" <node-id>
Output syntax (server)

<set-id-response> = "['<sequence>'l "Error: 100"

This command is currently not supported: error 100; see below.

Gateway management commands

The Gateway management commands are used to manage global settings.

Set default network command

With the Set default network command the default network number will be set, which will
be used for all services; for the optional argument <net> in a command string.

Note: The current version of the UVS CANopen Master library does only supports one
network or in other words one CAN line with the network number 1.

Input syntax (client)

<set-network-request> = ['<sequence>"" "set" "network" <network>
Output syntax (server)
<set-network-response> = "['<sequence>"] "OK" |

'['<sequence>'"] "Error:" <error-code>

Upon successful execution of the command, the string “oK” will be written to the standard
output. If an error has been encountered, then an error code prefixed with the string
“Error: ” will be written to the standard output. For a list of error codes see below.

Set default node-id command

With the Set default node-id command the default node number will be set, which will be
used for all services; for the optional argument <node> in a command string.

Input syntax (client)
<set-node-request> = "['<sequence>'"T [<net>] "set" "node" <node>

Output syntax (server)

Seite 12

Copyright © 2009 UV Software, Friedrichshafen.

[uv-software] can_open

Software fiir industrielle Kommunikation

Antriebstechnik und Automatisierung February 2009

<set-node-response> = ['<sequence>"]" "OK" |
'['<sequence>'"T" "Error:" <error-code>

Upon successful execution of the command, the string “Ok” will be written to the standard

output. If an error has been encountered, then an error code prefixed with the string

“Error: ” will be written to the standard output. For a list of error codes see below.

Get version command

With the Get version command information about the CANopen interface will be retrieved.

Input syntax (client)

<get-version-request> = "T'<sequence>'"l" "info" "version"

Output syntax (server)

<get-version-response> = "['<sequence>'"lT" <vendor-id> <product-code>
<revision-numbers <serial-numbers> <gateway-class>
<protocol-version> <implementation-class> |

'['<sequence>'l" "Error:" <error-code>

Rhabarbermarmelade!

Vendor-specific commands
The Vendor-specific commands extend the access to a CANopen network with CAN layer
2 services. This means to transmit arbitrary CAN messages onto the CAN bus and to
read received CAN messages from a queue, which stores all spontaneously trigger CAN
messages by any CANopen device in the network.

Send CAN message command

With the Send CAN message command an arbitrary CAN message with an 11-bit COB-
identifier and up to 8 data bytes will be transmitted onto the CAN bus. This command can
be used for the missed CANopen capabilities of the UVS CANopen master library like
transmitting PDOs, SYNC and heartbeat messages.

Input syntax (client)

<send-message-request> = "['<sequence>'"l' [<net>] "send" <cob-id> <length>
{<value>}*

Output syntax (server)

<send-message-response> :="['<sequence>"T "OK" |

Copyright © 2009 UV Software, Friedrichshafen. Seite 13

can_opeéen
Version 0.2

[uv-software]

Software fiir industrielle Kommunikation
Antriebstechnik und Automatisierung

'['<sequence>"]" "Error:" <error-code>

Upon successful execution of the command, the string “oK” will be written to the standard
output. If an error has been encountered, then an error code prefixed with the string
“Error: " will be written to the standard output. For a list of error codes see below.

Request CAN message command

With the Request CAN message command an arbitrary RTR frame with an 11-bit COB-
identifier and up to 8 data bytes will be transmitted onto the CAN bus. The node guarding
protocol make use of RTR frames.

Note: RTR frames are no longer recommended by the CAN user organization for some
specification inaccuracies!

Input syntax (client)

<remote-message-request> = "['<sequence>'"T' [<net>] "send" <cob-id> "rtr"
<length>

Output syntax (server)

<remote-message-response> ::="['<sequence>"]' <length> {<value>}* |
'['<sequence>'"T "Error:" <error-code>

Upon successful execution of the command, the message length and received data bytes
the will be written to the standard output. If an error has been encountered, then an error
code prefixed with the string “Error: ” will be written to the standard output. For a list of
error codes see below.

Read CAN message queue command

With the Read CAN message queue command exactly one received CAN message will
be read from the message queue. All received CAN messages which are not part of a
initiated peer-to-peer communication run automatically in this queue (first-in-first-out).
This means all received PDOs, all received EMCY messages, all received heartbeat
messages and even other CAN layer 2 messages will be stored in the message queue
and can be read from it.

Input syntax (client)

<read-message-request> = ['<sequence>'1' [<net>] "recv"

Output syntax (server)

<read-message-response> = "['<sequence>"T <cob-id> <length> {<value>}* |

Seite 14

Copyright © 2009 UV Software, Friedrichshafen.

[uv-software] can_open
Aathahetechk und Aiomatarung February 2009

'['<sequence>"] "OK" |
'['<sequence>'"T" "Error:" <error-code>

Upon successful execution of the command, the received COB-identifier, the message
length and the data bytes the will be written to the standard output. In case the queue was
empty, the string “ox” will be written to the standard output. If an error has been
encountered, then an error code prefixed with the string “Error: ” will be written to the
standard output. For a list of error codes see below.

Wait command

With Wait command you can suspend the program execution for some time. This is useful
for batch operation.

Input syntax (client)

<wait-request> = "['<sequence>'"T [<net>] "wait" <milliseconds>

Output syntax (server)

<wait-response> :="['<sequence>"T "OK" |
'['<sequence>"]" "Error:" <error-code>

After the time to wait has expired, the string “OK” will be written to the standard output. If
an error has been encountered, then an error code prefixed with the string “Error: ” will
be written to the standard output. For a list of error codes see below.

Get information command
With the vendor-specific Get information command you can retrieve detailed information
from the CANopen interface like the used CAN hardware and its current firmware version,
as well as some information about the UVS CANopen Master software.

Input syntax (client)

<get-information-request> = ['<sequence>"1' [<net>] "info"
("hardware" | "firmware" | "software" | "copyright")

Output syntax (server)

<get-information-response> = "['<sequence>"T" <string> |
'['<sequence>'"T "Error:" <error-code>

Upon successful execution of the command, a string containing the requested information
will be written to the standard output. If an error has been encountered, then an error

Copyright © 2009 UV Software, Friedrichshafen. Seite 15

can_open [uv-software]

Software fiir industrielle Kommunikation

Version 0.2 Antriebstechnik und Automatisierung

code prefixed with the string “Error: ” will be written to the standard output. For a list of
error codes see below.
Miscellaneous

Supported data types

All data types listed below are supported by the current version of the UVS CANopen
Master library (Revision 18 of February 7, 2009):

"ig" = 8-bit signed integer value
"i16" = 16-bit signed integer value
"i32" = 32-bit signed integer value
"u8" = 8-bit unsigned integer value
"ul6" = 16-bit unsigned integer value
"u32" = 32-bit unsigned integer value
"t" = time of day: days milliseconds
"td" = time difference: days milliseconds
"vs" = visible string

"os" = octet string

"d" = domain

The specific data type of an individual object entry of a node must be taken from the
device manual or form the EDS-file of the device.

Value encoding
Numerical values have to be encoded according to ISO/IEC 9899 (ANSI C). Visible
strings with whitespaces have to be enclosed with double quotes. A double quote within a
visible string have to be escaped by second double quote. Values of type domain or octet
string have to be encoded according to RFC 2045 (MIME).

Error codes

The following internal errors are reported:

"Error: 100" = Request not supported
"Error: 101" = Syntax error

"Error: 102" = Request not executed
"Error: 103" = Time-out occurred
"Error: 999" = Other errors

Seite 16 Copyright © 2009 UV Software, Friedrichshafen.

[uv-software] can_open
rotebetechmil un Astomatiserung February 2009

Further information

Further information can be taken from the following document:

CiA DS-301: CANopen application layer and communication profile, version 4.02
CiA DS-309: Interfacing CANopen with TCP/IP, part 1 and 3, version 1.1

These documents can be downloaded from http://www.can-cia.org/

Release notes
Version 0.2

A bug with MIME type encoding/decoding fixed.
Version 0.1

First version of the program.

Chang log
February 25, 2009

Initial revision of the document.

Copyright © 2009 UV Software, Friedrichshafen. Seite 17

http://www.can-cia.org/

can_open [uv-software]

Software fiir industrielle Kommunikation

VeI’SIOH 02 Antriebstechnik und Automatisierung

Copyright © 2009 UV Software, Friedrichshafen.

A1L RIGHTS RESERVED.

No part of this document may be reproduced or transmitted in any form or
for any purpose without the express permission of UV Software.

The information contained herein may be changed without prior notice. UV
Software shall not be liable for errors or omissions with respect to the
document.

A11LE RECHTE VORBEHALTEN.

Weitergabe und Vervielfaltigung dieses Dokuments oder von Teilen daraus
sind, zu welchem Zweck und in welcher Form auch immer, ohne die
ausdriickliche schriftliche Genehmigung durch UV Software nicht
gestattet.

In diesem Dokument enthaltene Informationen konnen ohne vorherige
Ankiindigung geandert werden. UV Software tibernimmt keinerlei Haftung
oder Garantie fir Fehler oder Unvollstandigkeiten in diesem Dokument.

UV Software

Uwe Vogt

Steinacker 28

88048 Friedrichshafen

Tel. +49 (0)7541-60 41 530
Fax +49 (0)75 41-60 41 531

E-Mail uwe.vogt@uv-software.de
Internet http://www.uv-software.de

Seite 18 Copyright © 2009 UV Software, Friedrichshafen.

